

SKIN BACTERIOME AND ITS RESISTANCE TO ANTIBIOTICS IN FREE RANGE PIGS

Laura Andreea RUSU¹, Mihaela NICULAE¹, Aurel VASIU¹, Emoke PALL¹, Diana Ioana OLAH¹, Constantin CERBU¹, Carmen Dana ŞANDRU¹, Marina SPÎNU¹,

¹ Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

Introduction

- > swine cutaneous microbiome is used as a skin model, for various test (Bush et al., 1986)
- > skin bacteriome and its antibiotic resistance depends on habitat conditions (McIntyre et al., 2016; Nowland et al., 2019)
- its unique to each individual, but related to the growing system (Curtis et al., 1975)

Introduction

- > in free range systems swine contact its closely related with all environment factors
- > close interaction human-pig in low input small farms => high human exposure to zoonotic disease (Silvana Popescu, 2013)
- > environment continuous disruptions lead to skin bacteriome changes and high antibiotic resistance profile (McIntyre et al., 2016)

Aims

> study of pigs raised in low input small farms, to establish cutaneous microflora and its antibiotic resistance

Fig. 1. Various raising conditions on free-range farms

Material and methods

- research conducted on mixed breed pigs, grown in free range farms
- ➤ samples collected with swabs from skin surface and processed by classic microbiological methods (cultivation on simple broth and nutrient agar, colony isolation and biochemical identification Remel RapIDTM test kits)
- antimicrobial resistance to gentamicin, streptomycin, oxitetracycline, tylosin, amoxacillin-clavulanic acid, marbofloxacin, tulatromycin, cefotaxime and doxycycline, using Kirby Bauer method
- > calculation of MAR index

Fig. 2. Simple broth

Fig. 3. Nutrient agar

Results

identification of strains from *Staphylococcus* (*sciuri and warnerii*), *Shigella spp.*, *Kytococcus* (*sedentarius*), *Salmonella spp.* and *Citrobacter* (*freundii*), using RapID test, after cultivation and cultural characterization on simple broth and nutritive agar

ERIC Web											Identification Report						
RapID	Staph	Plu	Laura	a S													
														F	Run Date:		
Microcode:	073264										Reference No:			Cluj-Napoca			
Wilciocode.	013204													IXele	rence ivo.		
System Tests	-ADH	00%	+SUC	98%	+aGLU	56%	-GUR	16%	-PYR	03%	-LEU	21%					
	-ODC	00%	+MANO	93%	+BGLU	99%	+NAGA	98%	+ARG	00%	-LGLY	03%					
	-LIP	03%	+P04	95%	-ONPG	900%	-URE	02%	+ALA	04%	+NIT	98%					
QUESTION	ABLE	MIC	ROCC	DE	- Unre	liabl	e Prol	oabi	lities								
Choice					Probability			Bioscore				Contraindications					
S. sciuri				> 99.9%			1/90814			ARG [0] ALA [4]							

Fig. 4. Identification report of a Staphylococcus sciuri colony

Results

- > most resistant strain tested was S. warnerii
- ➤ high MAR index in 50% of tested strains (0.33)
- the most effective antiobiotic is cefotaxime, while oxytetracicline is less effective (its high usage can increase the emergence of antibiotic resistant colonies

Antibiotic Sample	CN	TUL	СТХ	DO	S	AMC	MAR	Т	TY	MAR Index
Shigella	18 mm	24 mm	21 mm	20 mm	19 mm	R	24 mm	R	R	0,33
K. sedintarius	22 mm	29 mm	21 mm	23 mm	22 mm	8 mm	21 mm	R	R	0,22
S. sciuri	17 mm + CR	16 mm	18 mm	31 mm	16 mm + CR	24 mm	19 mm	28 mm	18 mm	0,22
S. warneri	18 mm + CR	10 mm + CR	17 mm	16 mm	21 mm	19 mm	21 mm	R	17 mm	0,33
	2CR	1CR	sens	sens	1CR	1R	sens	3R	2R	

Fig. 5. Antibiotic inhibition diameter and MAR index, for tested strains

Conclusion

- > presence of ubiquitous and pathogenic antibiotic resistant strains
- > caution regard growing conditions in low input farms and therapy, to avoid pathogenicity expression of bacterial strains, present in skin bacteriome

References

- 1. Bush, L. W., Benson, L.M., White, J. H. (1986). Pig skin as test substrate for evaluating topical antimicrobial activity. Journal of Clinical Microbiology, 24(3): 343–348.
- 2. Curtis, S.E., J.G. Drummond, K.W. Kelley, A.H. Jensen, 1975. Diurnal and annual fluctuations of aerial bacterial and dust levels in enclosed swine houses, J. Anim. Sci.
- 3. McIntyre, M. K., Peacock, T. J., Akers, K. S., Burmeister, D. M. (2016). Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. *PloS one*, *11*(11)
- 4. Nowland T. L., Plush, K. J., Barton, M., & Kirkwood, R. N. (2019). Development and function of the intestinal microbiome and potential implications for pig production. Animals (Basel), 9(3)
- 5. Silvana Popescu, 2013. Manual -Animal hygiene and environmental protection Volume II. Hygiene requirements and measures in animal husbandry and exploitation

Thank you, for your attention!

