

This study aimed to compare the detection capability for *Trichinella* spiralis larvae of artificial digestion and an experimental microfluidic device in pigs.

5g/animal/nr. Ctr	Microfluidic device	Results microfluidic device	Results artificial digestion
	CMF3 E	0 larvae	2 larvae
Porc/Nr.ctr 1	CIVIF3 E	0 larvae	2 larvae
Porc/Nr ctr. 2	CMF3 E	40 larvae	75 larvae
Porc/Nr ctr. 3	CMF3 E	18 larvae	12 larvae
Porc/ Nr. ctr. 4	CMF3 E	4 larvae	58 larvae
Porc/ Nr. ctr. 5	CMF3 E	1 larvae	20 larvae
Porc/ Nr. Ctr. 6	CMF3 E	0 Larvae	21 larvae
Porc/Nr. Ctr. 7	CMF3 E	51 Larvae	68 Larvae
Porc/Nr. Ctr. 8	CMF3 E	35 Larvae	32 Larvae
Porc/Nr. Ctr. 9	CMF3 E	19 larvae	100 larvae
Porc/ Nr. Ctr. 10	CMF3 E	50 larvae	500 larvae
	Total	168 larvae	888 larvae

The International Conference of the University of Agronomic

RESULTS

The International Conference of the University of Agronomic

Observations (microfluidic device)

Positive:

Larvae detecting capability 80%; Reduced content (residues) in the filter 90%; Good visibility 100%; It did not leak near the entry and exit areas 50%; Larvae retained in the filter area 100%;

Larvae escaped from filtering area 60%;
It leaked near the entry areas 70%;
The larvae retained in the inlet tube 90%
Many residues retained and which made it difficult to count the larvae 10%;

The International Conference of the University of Agronomic

- The results indicate that the microfluidic device can be used in the direct detection and numbering of *T. spiralis* larvae but it's not as efficient as artificial digestion.
- Larvae and their structural integrity is easily observable in this new method.
- More improvements in this new device (microfluidic) are necessary.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N°816172.

THANK YOU!

