Poultry and Plg Low-input and Organic production systems' Welfare

Animal welfare and pork quality of intact male pigs in organic farming according to genotype

Bénédicte LEBRET¹, S. Ferchaud², A. Poissonnet³, A. Prunier¹

¹INRAE PEGASE, ¹INRAE Porganic, ³IFIP

74th EAAP annual meeting, Lyon France 28-31 August 2023

Context and objectives - 1

Pig farming, conventional or organic

- Ban of surgical castration of male pigs without anesthesia in France from January 2022
- Rearing intact males: risks for aggressive behaviors and for undesirable odor and/or flavor of meat: boar taint (androstenone, skatole)
 - > Possible impairment in animal welfare and/or pork quality

Lundström et al., 2009: Prunier et al., 2013; Parois et al., 2018

Organic farming

- EU regulation (2018/848 and 2020/464) in force in 2022
- Endorsed by European policy: Farm to fork strategy for a fair, healthy and environmentally friendly food system (EU, 2020)

Organic food chosen by consumers for health, food quality, and ethical motives: environmental consciousness and animal welfare Baudry et al., 2017;

AgenceBio, 2022

Context and objectives - 2

Organic pig farming

- Avoid surgical castration, but develop strategies to **prevent undesired behaviors** (mounting, aggressions) in intact males and **avoid boar taint** in meat and pork products
- > Allow ending of surgical castration in good conditions for animals, farmers, consumers

Pig genotype: lever to modulate/improve welfare and meat quality in organic pigs?

- ➤ Health and welfare indicators, boar taint, carcass and meat quality from intact male pigs in 2 genotypes: Duroc (x Large White) vs Piétrain (x Large White)
 - Breed differences in animal behavior

Terlouw et al., 2009;

- Piétrain: "standard", used in conventional and organic, low risk for boar taint
- Duroc: improved meat eating and technological quality, higher risk for boar taint

Lebret & Candek-Potokar, 2022; Lebret et al., 2023

> Prediction of boar taint risk at lower slaughter live weight

Experimental design

INRAE Porganic experimental facilities

Partners: IFIP (health & welfare), Nucleus (genetic selection), Cooperl (slaughterhouse)

- ✓ 2 experimental replicates, each including one group of intact males per genotype => 47 DuxLW and 34 PixLW in total
- ✓ Feeding: growing and finishing organic diets (ad libitum) and hay in a rack
- ✓ 2 slaughtering sessions per replicate, with similar number of pigs from each genotype

- ✓ Blood sampling during fattening (2 to 4 samples/pig)
- ✓ Growth performance and carcass traits
- ✓ Meat quality traits and boar taint components

INRAPorganic experimental facilities

2 pens filled every 6 weeks1 pen Pietrain x LW, 1 pen Duroc x LW

Results

Indicators of health and welfare

Health indicators	Duroc x LW	Pietrain x LW
Mortality rate	0 %	5.6 %
Bad general state (% pigs)	0.7	0
Pigs with lameness, score of severity (% pigs)		
- 0: no sign of lameness	100	97.1
- 1	0	1.0
- 2	0	0
- 3 = severely lame, impossible to walk	0	1.9

> Lower mortality rate and lameness for Duroc vs Pietrain crossbred males

Indicators of health and welfare

Welfare indicators on farm	Duroc x LW	Pietrain x LW
Pigs with skin wounds larger than 5 cm (% pigs)	1.4	2.9
Pigs with at least 15 scratches on one side (% pigs)	0	24
Pigs with tail lesions, score of severity (% pigs)		
- 0: no sign of lesion	95.2	96.5
- 1	4.8	3.5
- 2	0	0
- 3 = severe lesion	0	0

> ≥ aggressive or mounting behaviors (or lower fragility of skin from Duroc?)

Carcass scratches at slaughterhouse (square root values)

Growth performance and carcass traits

	Duroc x LW	Pietrain x LW	Significance
Number of pigs	47	34	
Final live weight, kg	124.2	125.4	ns
Average growth rate (27-125 kg), g/d	952	966	ns
Average daily feed intake, kg	2.73	2.80	-
Feed conversion ratio	2.85	2.88	-
Carcass dressing, %	76.1	76.8	G*, R**
Hot carcass weight, kg	96.5	98.4	G*
Lean meat content, %	58.9	60.8	G***

effects of genotype: G and replicate: R; ***: P<0.001, **: P<0.01 *: P<0.05), ns : P>0.05

- > Similar growth performance in Duroc and Pietrain crossbreeds
- > Lower carcass weight and lean meat content in Duroc pigs (higher fat and lower muscle thickness)

Meat quality traits of the loin (longissimus)

	Duroc x LW	Pietrain x LW	Sign.
pH 24 h	5.51	5.50	
Drip loss,%	4.70	5.66	G*
Colour: lightness (L*)	48.9	50.0	G*
Colour: redness (a*)	9.97	9.22	G*
Intramuscular fat content, %	2.50	1.90	G***
Shear force of cooked meat, N	33.2	35.0	G ^t

(effects of genotype G and replicate R, ***: P<0.001, *: P<0.05, t: P<0.10)

- > Similar ultimate pH (also in ham muscles)
- > Overall: higher water-holding capacity, redness and IMF, lower lightness and toughness of pork in **Duroc pigs => higher technological and sensory quality traits**

Boar taint components in backfat

- > Similar average skatole, but higher androstenone content in Duroc vs Pietrain crossbreeds
- > Only 1 Duroc carcass detected as odorant at slaughterhouse (highest skatole content)
- Considering limits of "perception" (rejection) by consumers to be 0.15 μg/g for skatole and 3.0 μg/g for androstenone, more carcasses from Duroc (17.4%) than Pietrain (8.8%) crossbreeds would be rejected

Plasma oestradiol and relationships with androstenone in backfat

- Higher plasma oestradiol for Du vs Pi pigs
- Very high correlation between plasma oestradiol and fat androstenone
 => plasma oestradiol can be used to predict fat androstenone

Estimation of risk for boar taint related to androstenone

- ≤ 50 pg oestradiol/ml plasma: close to 0
- > 50 pg oestradiol/ml plasma: around 63 %

Effect of genotype and reduction of slaughter live weight on the risk for boar taint

Plasma oestradiol (2 to 4 blood samples during fattening on each pig)

Calculation of boar taint risk due to androstenone at given slaughter weight, considering:

- Risk = 0 for plasma oestradiol ≤ 50 pg/ml and risk = 63% for oestradiol > 50 pg/ml

- > Pietrain: very low risk below 125 kg, close to 6% above 125 kg live weight
- > Duroc : **gradual increase of risk** from ≈ 8% below 85 kg to ≈ 23% above 125 kg live weight
- ➤ **Risk due to skatole**: probably independent of live weight, low if good environmental conditions: clean animals (clean bedding) and good air renewal

 Parois et al., 2018

Conclusions

Pig genotype: Duroc vs Pietrain crossbreeds

- Improvement of **health and welfare indicators** for intact males
- Similar **growth performance** between both genotypes
- Lower carcass leanness (-> lower commercial value)
- Higher technological quality (i.e. ability for processing)
- Meat quality traits (intramuscular fat, shear force) suggest higher meat tenderness
- But higher risk for boar taint (androstenone)

Reduction of live weight at slaughter

- Decreases the risk for androstenone, especially for Duroc crossbreeds
- For both genotypes, avoid live weight above 125 kg

Acknowledgements

INRAE Porganic experimental facilities (86, Rouillé) and PEGASE laboratories (35 St-Gilles), IFIP (35 Le Rheu), Cooperl slaughterhouse (86 Ste Eanne), France EU Funding PPILOW project

Thank you for your attention!

benedicte.lebret@inrae.fr

